Dynamic Modelling of Flexible Payloads Manipulated by a Smart gripper in robotic assembly

نویسندگان

  • Edward J. Park
  • James K. Mills
چکیده

During robotic assembly of flexible payloads, gravity and inertial forces acting on these payloads may induce both static shape deformation and vibration of the thin-walled payloads. Static deformations, which arise from deformation of the part due to its own weight under the influence of gravity, lead to misalignment of mating points of the part. Unwanted vibrations, arising from inertial forces acting on the part as it is positioned for assembly, must be damped out before it can be mated with other parts. This paper investigates the development of dynamic models of arbitrarily shaped flexible thin-walled payloads grasped by a smart gripper, comprised of multiple linearly actuated fingers with non-contact proximity sensors. Such an actuated gripper allows both partreshaping and active damping of unwanted vibrations of the part. Finite element modelling techniques are used to generate dynamic models of these arbitrarily shaped parts. Component mode synthesis methods are used to combine the dynamics of the actuated gripper with the dynamics of the thin-walled parts. The resultant dynamic model, developed with finite element modelling, is of high order, and hence model order reduction methods are employed to reduce the model order but retain the essential dynamics of the thinwalled payload gripper system. Using a two time-scale modelling technique, an integrated closed-loop modal truncation and control design procedure is used to design a shape and vibration controller for thin-walled payload. Simulation results modelling thin-walled sheet metal parts manipulated by an industrial robot confirm the validity of the proposed modelling approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Load Carrying Capacity of Flexible Manipulators Using Finite Element Method and Pontryagin’s Minimum Principle

In this paper, finding Dynamic Load Carrying Capacity (DLCC) of flexible link manipulators in point to-point motion was formulated as an optimal control problem. The finite element method was employed for modelling and deriving the dynamic equations of the system. The study employed indirect solution of optimal control for system motion planning. Due to offline nature of the method, many diffic...

متن کامل

Error Recovery by the Use of Sensory Feedback and Reference Measurements for Robotic Assembly

Industrial robots need instrument or parts transport to do which requires coordinate to show the robot’s instrument, parts and body. When investigating the robot location, we are usually interested in measuring its location relative to a reference coordinate system. In this system it is attempted to make the assemble direction smaller by designing the sensor board and making use of an instrumen...

متن کامل

A Modular, Reconfigurable Mold for a Soft Robotic Gripper Design Activity

Soft robotics is an emerging field with strong potential to serve as an educational tool due to its advantages such as low costs and shallow learning curves. In this paper, we introduce a modular and reconfigurable mold for flexible design of pneumatic soft robotic grippers. By using simple assembly kits, students at all levels are able to design and construct soft robotic grippers that vary in...

متن کامل

Development of a Robust Observer for General Form Nonlinear System: Theory, Design and Implementation

The problem of observer design for nonlinear systems has got great attention in the recent literature. The nonlinear observer has been a topic of interest in control theory. In this research, a modified robust sliding-mode observer (SMO) is designed to accurately estimate the state variables of nonlinear systems in the presence of disturbances and model uncertainties. The observer has a simple ...

متن کامل

Automatic formulation of falling multiple flexible-link robotic manipulators using 3×3 rotational matrices

In this paper, the effect of normal impact on the mathematical modeling of flexible multiple links is investigated. The response of such a system can be fully determined by two distinct solution procedures. Highly nonlinear differential equations are exploited to model the falling phase of the system prior to normal impact; and algebraic equations are used to model the normal collision of this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • I. J. Robotics and Automation

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2006